MHD Models of Jets & Winds

Kanaris Tsinganos Department of Physics, University of Athens, Greece tsingan@phys.uoa.gr

Classes of Astrophysical Objects with Highly Collimated Jets

- Active Galactic Nuclei & Quasars, e.g., M87, 3C273, etc
- X-Ray Binaries, e.g., SS433, etc
- Symbiotic Stars, e.g., R Aquarii, etc
- Young Stellar Objects, e.g., HH30, HH34, etc
- Black Hole X-Ray Transients, e.g., GRS 1915+105, etc
- Cataclysmic Variables, e.g., T Pyxidis
- Super Soft X-Ray Sources, e.g., CAL 83, 84
- Planetary Nebulae Nuclei, e.g., Egg Nebula, etc
- Pulsars, e.g., Crab and Vela Pulsars

...and also at the beginning of the life of a star

Jets are useful – for example in young stellar objects jets remove angular momentum and thus allow the the disk to collapse and the star to form

Jets from Young Stars

HST · WFPC2

PRC95-24a · ST Scl OPO · June 6, 1995 C. Burrows (ST Scl), J. Hester (AZ State U.), J. Morse (ST Scl), NASA

The Dichotomy of Winds and Jets

• Winds = no collimation

• Jets = tight collimation

Solar Wind

1. Star-birth

2. Star-death

3. Pulsars

4. AGN

Questions still open+under study

- Jet source: accretion, or, * central engine *
- Jet composition: electron-proton, or, * electron-positron plasma *
- Jet acceleration: thermal or radiation pressure, MHD Waves, * magnetocentrifugal acceleration *
- Jet confinement: thermal pressure, or, *
- Jet stability: hy
- Jet speed:
- Jet radiation:

magnetic hoop stress * hydrodynamic, or, hydromagnetic stability nonrelativistic, or, *

relativistic*

shocks, magnetic fields, etc

Origin, Acceleration, Collimation Origin

- Accretion disk
- Central object
- Accretion disk-central object interface

Acceleration

- Pressure gradient driving (thermal, radiation, waves, etc)
- Magnetocentrifugal driving

Collimation

- Pressure gradient confinement (thermal, radiation, waves, etc)
- Magnetic confinement (magnetic hoop stress)

Jet source :

- Accretion disk
- Central object
- Accretion disk-central object interface

Plasma acceleration :

Pressure gradient driving
Magnetocentrifugal driving
(thermal, radiation, waves, etc)

Plasma collimation :

• pressure gradient confinement (thermal, radiation, waves, etc)

• magnetic confinement (magnetic hoop stress)

MHD modelling of cosmical outflows

• <u>I. Steady models</u>

Advantages:

- analytical treatment
- parametric study
- physical picture
- cheap method

Difficulties:

- Nonlinearity (MHD set !)
- 2-dimensionality (PDEs !)
- Causality (unknown critical surfaces !)

- II. Time-dependent models
- temporal evolution
- nonideal MHD effects

- 3D MHD code (magnetic flux conservation !)
- large grid space (large lengths of jets !)
- correct boundary conds (boundary effects !)
- expensive method !

Basic Equations of the MHD Problem

 $\vec{\mathbf{V}}(x_1, x_2, x_3)$: Bulk Flow Speed of Plasma

 $\vec{\mathbf{B}}(x_1, x_2, x_3)$: Magnetic Field in Plasma

 $\vec{\mathbf{J}}(x_1, x_2, x_3)$: Electric Current Density in Plasma

 $\vec{\mathbf{G}}(x_1, x_2, x_3)$: External (gravitational) Field in Plasma

 $\rho(x_1, x_2, x_3)$: Plasma Density

 $P(x_1, x_2, x_3)$: Plasma Pressure

$$h(x_1, x_2, x_3)$$
 : Enthalpy $\left(=\frac{\Gamma}{\Gamma-1}\frac{P}{\rho}\right)$

 $q(x_1, x_2, x_3)$: Volumetric Rate of Energy Addition in System in general curvilinear coordinates (x_1, x_2, x_3) .

Analytical Solutions: Self-similarity

- Analytical solutions
 In steady states, the axisymmetric ideal MHD equations that describe plasma outflows can be analytically solved by a non linear separation of the variables
- By a systematic way there have been found¹ two
 - general families of solutions
 - Radially Self Similar
 - Meridionally Self Similar

• These two classes of models are the ONLY 2D analytical solutions available today for MHD outflows, Vlahakis & Tsinganos, Kankis This Ros IS AM 2998 17

I. STEADY and AXISYMMETRIC MHD MODELS

The problem of causality:

The MHD equations are of mixed elliptic/hyperbolic character and in hyperbolic regimes exist separatrices separating causally areas which cannot communicate with each other via an MHD signal.

They are the analog of the limiting cycles in Van der Pol's nonlinear differential equation, or, the event horizon in relativity.

The MHD critical points appear on these separatrices which do not coincide in general with the fast/slow MHD surfaces. To construct a correct solution we need to know the limiting characteristics, but this requires a knowledge of the solution !

Balance of various MHD forces along and across the jet from base to infinity

Families of solutions

 Cylindrical
 Radial or Conical (jets)
 (Winds)

A criterion for cylindrical collimation:

A=A

E₁ E₀

Efficiency of the Magnetic Rotator

$$\varepsilon = \frac{L\Omega - E_{R,o} + \Delta E_G^*}{L\Omega} \quad \text{where} \quad \Delta E_G^* = -\frac{GM}{r_0} \left(\frac{-\Delta T}{T_0}\right)$$

> 0 --> Efficient Magnetic Rotator (EMR)

• $\varepsilon > 0$ --> Efficient Magnetic Kolalor

• $\epsilon < 0$ --> Inefficient Magnetic Rotator (IMR)

A classification of outflows

Unified Scheme for AGNs

Decreasing Viewing Angle

- Infficient Magnetic Rotators (wide-angle outflows)
- Efficient Magnetic Rotators (Narrow jets)

II. Time-dependent studies

- Time-dependent **simulations**: Governing MHD equations -

$$\begin{split} \mathbf{B}_{\mathbf{p}} &= \frac{\nabla A \times \hat{\varphi}}{\varpi}.\\ &\frac{\partial A}{\partial t} = -V_{\varpi} \frac{\partial A}{\partial \varpi} - V_{z} \frac{\partial A}{\partial z},\\ &\frac{\partial \rho}{\partial t} = -\frac{1}{\varpi} \frac{\partial}{\partial \varpi} (\rho \varpi V_{\varpi}) - \frac{\partial}{\partial z} (\rho V_{z}),\\ &\frac{\partial B_{\varphi}}{\partial t} = \frac{\partial}{\partial z} (V_{\varphi} B_{z} - V_{z} B_{\varphi}) - \frac{\partial}{\partial \varpi} (V_{\varpi} B_{\varphi} - V_{\varphi} B_{\varpi}),\\ &\frac{\partial V_{\varphi}}{\partial t} = -\frac{V_{\varpi}}{\varpi} \frac{\partial}{\partial \varpi} (\varpi V_{\varphi}) - V_{z} \frac{\partial V_{\varphi}}{\partial z} + \frac{1}{4\pi\rho} \left(B_{\varpi} \frac{\partial}{\varpi \partial \varpi} (\varpi B_{\varphi}) + B_{z} \frac{\partial B_{\varphi}}{\partial z} \right),\\ &\frac{\partial V_{z}}{\partial t} = -V_{\varpi} \frac{\partial V_{z}}{\partial \varpi} - V_{z} \frac{\partial V_{z}}{\partial z} - \frac{1}{\rho} \frac{\partial P}{\partial z} - \frac{GMz}{r^{3}} - \frac{1}{8\pi\rho \varpi^{2}} \frac{\partial}{\partial z} (\varpi B_{\varphi})^{2} \\ &- \frac{B_{\varpi}}{4\pi\rho} \left(\frac{\partial B_{\varpi}}{\partial z} - \frac{\partial B_{z}}{\partial \varpi} \right),\\ &\frac{\partial V_{\varpi}}{\partial t} = -V_{\varpi} \frac{\partial V_{\varpi}}{\partial \varpi} - V_{z} \frac{\partial V_{\varpi}}{\partial z} - \frac{1}{\rho} \frac{\partial P}{\partial \varpi} - \frac{GM\varpi}{r^{3}} - \frac{1}{8\pi\rho \varpi^{2}} \frac{\partial}{\partial \varpi} (\varpi B_{\varphi})^{2} + \frac{V_{\varphi}}{\varpi} \right). \end{split}$$

$$+\frac{B_z}{4\pi\rho}\left(\frac{\partial B_{\varpi}}{\partial z}-\frac{\partial B_z}{\partial \varpi}\right),$$

 $\frac{V_{\varphi}^2}{\varpi}$

 $\begin{array}{l} (z, \varpi, \varphi) \Longrightarrow \text{ cylindrical coordinates,} \\ \rho \Longrightarrow \text{density,} \\ \vec{V} \Longrightarrow \text{flow speed,} \\ \vec{B} \Longrightarrow \text{magnetic field,} \end{array}$ $A(z, \varpi) \Longrightarrow$ poloidal magnetic flux.

Magnetic self-collimation (numerically)

A near zone snapshot on the poloidal plane showing the change of shape of the poloidal magnetic field from an initially uniform with latitude radial monopole (before a stationary state is reached).

Magnetic self-collimation (numerically)

Far Zone : Poloidal magnetic lines of outflow at intervals of equal magnetic flux. Before rotation starts After rotation started ŝ z 5×10⁴ Ν ъ Ó Ċ -5×104 5×10 -105 0 -10^{5} 5×10⁴ 105 -5×10⁴ 0

Very weak direct collimation of relativistic plasma

A two-compenent model for jets from a system of a central source+disk

Recent numerical simulations and analytical models of magnetically collimated plasma outflows from a uniformly rotating central gravitating object and/or a Keplerian accretion disk have shown that relatively low mass and magnetic fluxes reside in the produced jet. Observations however indicate that in some cases, as in jets of YSO's, the collimated outflow carries higher fluxes than these simulations predict. A solution to this problem is proposed by the above model where jets with high mass flux originate in a central source which produces a noncollimated outflow provided that this source is surrounded by a rapidly rotating accretion disk. The relatively faster rotating disk produces a collimated wind which then forces all the enclosed outflow from the central source to be collimated too. This conclusion is confirmed by self-consistent numerical solutions of the full set of the MHD equations.

r

r

Collimation of stellar outflow by surrounding disk-wind

Shock formation in a 2-component outflow by a rotating disk-wind

In panel (a) a sketch of the shock waves and singular surfaces which are expected to be formed in the general case of a two-component outflow is presented. The oblique shock front marked by '1' is formed at the collision of the two parts of the collimated and still uncollimated flows. An outgoing weak discontinuity from the one end of this shock is marked by '2'. The shock front marked by '3' is formed at the self reflection of the collimated flow at the axis of rotation. Under special conditions this collision shock may not be formed. In this case, the structure a shock as the one shown in panel (b) is expected

Conclusions

MHD outflows can be modelled via a combination of analytical + numerical means. In particular, we can answer the question of the observed dichoromy of winds/jets as a result of the central engine beeing an efficient (jets) or inefficient (winds) magnetic rotator. In the sam espirit we may understand the FRI (winds or loosely collimated jets)/FR I tightly collimated jets) dichotomy.